题目内容

已知函数 的导数.
(1)当时,求的单调区间和极值;
(2)设,是否存在实数,对于任意的,存在,使得成立?若存在,求出的取值范围;若不存在,说明理由.
(1)单调递减,在单调递增,极大=极小=
(2)存在符合要求

试题分析:(1)当时,
得:,                                       ……2分
所以单调递减,在单调递增,              ……4分
所以极大=极小=                          ……6分
(2)在是增函数,故对于.
.

,得.                                               ……8分
要使对于任意的,存在使得成立,只需在上,
-, 
;在
所以时,有极小值                  ……10分

因为在只有一个极小值,故的最小值为  ……12分
 解得.                                 ……14分
点评:导数是研究函数性质的主要依据,研究性质时一定不要忘记考虑函数的定义域.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网