题目内容

【题目】为评估设备生产某种零件的性能,从设备生产零件的流水线上随机抽取100件零件作为样本,测量其直径后,整理得到下表:

直径/

58

59

61

62

63

64

65

66

67

68

69

70

71

73

合计

件数

1

1

3

5

6

19

33

18

4

4

2

1

2

1

100

经计算,样本的平均值,标准差,以频率值作为概率的估计值.

(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的概率);

评判规则为:若同时满足上述三个不等式,则设备等级为甲;仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部不满足,则等级为丁,试判断设备的性能等级.

(2)将直径小于等于或直径大于的零件认为是次品.

①从设备的生产流水线上随意抽取2件零件,计算其中次品个数的数学期望

②从样本中随意抽取2件零件,计算其中次品个数的数学期望.

【答案】(I)丙;(II)(;(

【解析】试题分析:(1)运用相关系数进行判别推理;(2)运用贝努力分布的几何分布求解期望.

试题解析:

1

因为设备的数据仅满足一个不等式,故其性能等级为丙;

2)易知样本中次品共6件,可估计设备生产零件的次品率为0.06.

)由题意可知,于是

)由题意可知的分布列为

.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网