题目内容
【题目】已知椭圆C: + =1的左、右焦点分别为F1 , F2 , 直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直于直线l1于点P,线段PF2的垂直平分线与l1的交点的轨迹为曲线C2 , 若点Q是C2上任意的一点,定点A(4,3),B(1,0),则|QA|+|QB|的最小值为( )
A.6
B.3
C.4
D.5
【答案】D
【解析】解:∵圆C: + =1的左右焦点为F1 , F2 ,
∴F1(﹣1,0),F2(1,0),直线l1:x=﹣1,
设l2:y=t,设P(﹣1,t),(t∈R),M(x,y),
则y=t,且|MP|=|MF2|,
∴(x+1)2=(x﹣1)2+y2 ,
∴曲线C2:y2=4x,
则B(1,0)为曲线C2:y2=4x焦点,
过Q做QQ′垂直于曲线C2的准线,
由抛物线的定义可知:丨QQ′丨=丨QB丨,
|QA|+|QB|=|QA|+|QQ′丨,当A,Q,Q′三点共线时,|QA|+|QQ′丨取最小值,
则Q′(﹣1,3),则|QA|+|QQ′丨的最小值为4﹣(﹣1)=5,
∴|QA|+|QB|的最小值5,
故选D.
练习册系列答案
相关题目