题目内容
【题目】已知向量 ,将函数 的图象按向量 平移后得到函数g(x)的图象.
(1)求函数g(x)的表达式;
(2)若函数 上的最小值为h(a),求h(a)的最大值.
【答案】
(1)解:设P(x,y)是函数y=f(x)图象上的任意一点,它在函数y=g(x)图象上的对应点P'(x',y'),则由平移公式,得
∴ 代入函数 中,
得
∴函数y=g(x)的表达式为
(2)解:函数g(x)的对称轴为
①当 即 时,函数g(x)在[ ]上为增函数,
∴ ;
②当 即 时,
∴
当且仅当 时取等号;
③当 即 时,函数g(x)在[ ]上为减函数,
∴
综上可知,
∴当 时,函数h(a)的最大值为
【解析】(1)利用图象平移的知识,根据向量平移的公式建立平移之后的图象上点的坐标与平移之前图象上点的坐标之间的关系是解决本题的关键;(2)利用(1)中得到的函数关系式,确定该函数是二次函数类型,根据对称轴与函数定义区间的关系,结合分类讨论思想求出函数的最小值的表达式是解决本题的关键.
【考点精析】通过灵活运用函数的最值及其几何意义,掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值即可以解答此题.
练习册系列答案
相关题目