题目内容

【题目】曲线y=x3﹣2x+1在点(1,0)处的切线方程为(
A.y=x﹣1
B.y=﹣x+1
C.y=2x﹣2
D.y=﹣2x+2

【答案】A
【解析】解:验证知,点(1,0)在曲线上
∵y=x3﹣2x+1,
y′=3x2﹣2,所以k=y′|x1=1,得切线的斜率为1,所以k=1;
所以曲线y=f(x)在点(1,0)处的切线方程为:
y﹣0=1×(x﹣1),即y=x﹣1.
故选A.
欲求在点(1,0)处的切线方程,只须求出其斜率的值即可,故先利用导数求出在x=1处的导函数值,再结合导数的几何意义即可求出切线的斜率.从而问题解决.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网