题目内容
设函数
,其图象与
轴交于
,
两点,且x1<x2.
(1)求
的取值范围;
(2)证明:
(
为函数
的导函数);
(3)设点C在函数
的图象上,且△ABC为等腰直角三角形,记
,求
的值.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306731886.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306747271.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306763570.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306794575.png)
(1)求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306809287.png)
(2)证明:
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306825811.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306825452.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306841436.png)
(3)设点C在函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306856533.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306872608.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306887529.png)
(1)
;(2)详见解析;(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306903437.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306919617.png)
试题分析:(1)根据题意图象与
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306747271.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306763570.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306794575.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306965660.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306981385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306997386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306981385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306997386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306747271.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306763570.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306794575.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240433070751027.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307090673.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307106766.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240433071211218.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240433071371445.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307153742.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307168516.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307168917.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306965660.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307199698.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307215637.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307231728.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307246227.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307262608.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307277810.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307309686.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307324628.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307340707.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240433073551145.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240433073711432.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306872608.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307402921.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307418561.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306919617.png)
试题解析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306965660.png)
若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306981385.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307480551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306841436.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306997386.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307527524.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307543459.png)
当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307543482.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307558561.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306841436.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307589476.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307480551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306841436.png)
于是当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307543459.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306841436.png)
因为函数
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306731886.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306747271.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306763570.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306794575.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307730803.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306903437.png)
此时,存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307761744.png)
存在
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307777959.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307886620.png)
又由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306841436.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307901549.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307995549.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306903437.png)
(2)因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240433070751027.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307090673.png)
记
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307106766.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240433080731902.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307153742.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043308104831.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043308120417.png)
则有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043308135629.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043308151702.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307168917.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306965660.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307199698.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306825811.png)
(3)依题意有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307215637.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307231728.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307246227.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307262608.png)
于是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043308291949.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307277810.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307309686.png)
由直角三角形斜边的中线性质,可知
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307324628.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307340707.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240433073551145.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240433083851270.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240433084011717.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043308416467.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240433073711432.png)
又
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306872608.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307402921.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043307418561.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043306919617.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目