题目内容
已知函数f (x) = ![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846000364.png)
(1)试判断当
的大小关系;
(2)试判断曲线
和
是否存在公切线,若存在,求出公切线方程,若不存在,说明理由;
(3)试比较 (1 + 1×2) (1 + 2×3) ……(1 +2012×2013)与
的大小,并写出判断过程.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846000364.png)
(1)试判断当
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846016295.png)
(2)试判断曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846031241.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846047242.png)
(3)试比较 (1 + 1×2) (1 + 2×3) ……(1 +2012×2013)与
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846047218.png)
(1)
;
(2)方程
无解,故二者没有公切线。
(3) (1 + 1×2) (1 + 2×3) ……(1 +2012×2013)
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846062292.png)
(2)方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846078395.png)
(3) (1 + 1×2) (1 + 2×3) ……(1 +2012×2013)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846094230.png)
试题分析:(1)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846109341.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846125335.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846140326.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846172798.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846187215.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846203233.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846218228.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846234243.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846203233.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846265304.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846281270.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846062292.png)
(2)假设曲线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846016295.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846343274.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846359323.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846359396.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846343274.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846390298.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846406443.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846437378.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846437363.png)
令
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846452409.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846468341.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846484224.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846499252.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846515262.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846530223.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846546262.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846562324.png)
所以方程
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846078395.png)
(3)由(1)得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846593320.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846608843.png)
ln(1 + 1×2) + ln(1 + 2×3) + …+ln[1 + n (n + 1)]>
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846608413.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846640310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846655947.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846671189.png)
则ln(1 + 1×2) + ln(1 + 2×3) + …+ln(1 + 2012×2013) >2×2012-3=4021,
所以(1 + 1×2) (1 + 2×3) ……(1 +2012×2013)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824012846094230.png)
点评:典型题,本题属于导数应用中的基本问题,通过研究函数的单调性,明确了极值情况。涉及比较大小问题,通过构造函数,转化成了研究函数的单调性及最值。涉及对数函数,要特别注意函数的定义域。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目