题目内容
【题目】在一个盒子里装有6张卡片,上面分别写着如下定义域为的函数:
,,,,,.
(1)现在从盒子中任意取两张卡片,记事件为“这两张卡片上函数相加,所得新函数是奇函数”,求事件的概率;
(2)从盒中不放回逐一抽取卡片,若取到一张卡片上的函数是偶函数则停止抽取,否则继续进行,记停止时抽取次数为,写出的分布列,并求其数学期望.
【答案】(1);(2)分布列见解析,.
【解析】
试题分析:(1)根据函数的性质,两个奇函数的和是奇函数,而六个函数中有两个奇函数,根据排列组合知识 结合古典概型概率公式进行求解即可;(2)的所有可能取值为,分别求概率, 列出分布列, 再求出期望即可.
试题解析:(1)由题意得,是奇函数,,,为偶函数,为非奇非偶函数,所以.
(2)由题意可知,的所有可能取值为1,2,3,4,
,,,,
所以的分布列为:
1 | 2 | 3 | 4 | |
所以.
【题目】在某次测验中,有6位同学的平均成绩为75分, 用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
编号n | 1 | 2 | 3 | 4 | 5 |
成绩xn | 70 | 76 | 72 | 70 | 72 |
(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;
(2)从前5位同学中选2位同学,求恰有1位同学成绩在区间(68,75)中的概率.
【题目】某学校为了了解学生使用手机的情况,分别在高一和高二两个年级各随机抽取了100名学生进行调查.下面是根据调查结果绘制的学生日均使用手机时间的频数分布表和频率分布直方图,将使用手机时间不低于80分钟的学生称为“手机迷”.
高一学生日均使用手机时间的频数分布表
时间分组 | 频数 |
[0,20) | 12 |
[20,40) | 20 |
[40,60) | 24 |
[60,80) | 18 |
[80,100) | 22 |
[100,120] | 4 |
(1)将频率视为概率,估计哪个年级的学生是“手机迷”的概率大?请说明理由.
(2)在高二的抽查中,已知随机抽到的女生共有55名,其中10名为“手机迷”.根据已知条件完成下面的2×2列联表,并据此资料你有多大的把握认为“手机迷”与性别有关?
非手机迷 | 手机迷 | 合计 | |
男 | |||
女 | |||
合计 |
附:随机变量(其中为样本总量).
参考数据 | 0.15 | 0.10 | 0.05 | 0.025 | |
2.072 | 2.706 | 3.841 | 5.024 |