题目内容
【题目】在直角坐标系xOy中,以O为极点,x轴正半轴为极轴建立极坐标系,圆C的极坐标方程为,直线l的参数方程为(t为参数),直线l与圆C交于A,B两点,P是圆C上不同于A,B的任意一点.
(1)求圆心的极坐标;
(2)求△PAB面积的最大值.
【答案】(1);(2)。
【解析】
(1)先把圆的极坐标方程化为直角坐标方程(x-1)2+(y+1)2=2,再把圆心的坐标化为极坐标.(2)先求出弦长AB,再求点P到直线AB距离的最大值,即得面积的最大值.
(1)圆C的直角坐标方程为x2+y2-2x+2y=0,
即(x-1)2+(y+1)2=2.
所以圆心坐标为(1,-1),圆心极坐标为.
(2)直线l的普通方程为2x-y-1=0,
圆心到直线l的距离d=,
所以|AB|=2=,
点P到直线AB距离的最大值为,故最大面积Smax=.
练习册系列答案
相关题目