题目内容
【题目】设是双曲线的两个焦点, 在双曲线上。已知的三边长成等差数列,且,则该双曲线的离心率为
【答案】
【解析】试题由题意,可根据双曲线的定义及题设中三边长度成等差数列把三个边长都用a,c表示出来,再结合余弦定理即可得到结论.
由题,不妨令点C在右支上,则有
AC=2a+x,BC=x,AB=2c;
∵△ABC的三边长成等差数列,且∠ACB=120°,
∴x+2c=2(2a+x)x=2c﹣4a;
AC=2a+x=2c﹣2a;
∵AB2=AC2+BC2﹣2ACBCcos∠ACB;
∴(2c)2=(2c﹣4a)2+(2c﹣2a)2﹣2(2c﹣4a)(2c﹣2a)(﹣);
∴2c2﹣9ac+7a2=02e2﹣9e+7=0;
∴e=,e=1(舍).
故答案为: .
【题目】在传染病学中,通常把从致病刺激物侵入机体或者对机体发生作用起,到机体出现反应或开始呈现该疾病对应的相关症状时止的这一阶段称为潜伏期.一研究团队统计了某地区100名患者的相关信息,得到如下表格:
潜伏期(单位:天) | |||||||
人数 | 85 | 205 | 310 | 250 | 130 | 15 | 5 |
(1)求这1000名患者的潜伏期的样本平均数(同一组中的数据用该组区间的中点值作代表);
(2)该传染病的潜伏期受诸多因素的影响,为研究潜伏期与患者年龄的关系,以潜伏期是否超过6天为标准进行分层抽样,从上述1000名患者中抽取200人,得到如下列联表.请将列联表补充完整,并根据列联表判断是否有95%的把握认为潜伏期与患者年龄有关;
潜伏期天 | 潜伏期天 | 总计 | |
50岁以上(含50岁) | 100 | ||
50岁以下 | 55 | ||
总计 | 200 |
附:
0.05 | 0.025 | 0.010 | |
3.841 | 5.024 | 6.635 |
,其中.
【题目】为了调查某地区70岁以上老人是否需要志愿者提供帮助,用简单随机抽样的方法从该地区调查了100位70岁以上老人,结果如下:
男 | 女 | |
需要 | 18 | 5 |
不需要 | 32 | 45 |
(1)估计该地区70岁以上老人中,男、女需要志愿者提供帮助的比例各是多少?
(2)能否有的把握认为该地区70岁以上的老人是否需要志愿者提供帮助与性别有关;
(3)根据(2)的结论,能否提供更好的调查方法来估计该地区70岁以上老人中,需要志愿者提供帮助的老人的比例?说明理由.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
,.