题目内容
【题目】己知函数是定义在上的奇函数,当时,,则函数在上的所有零点之和为( )
A.7B.8C.9D.10
【答案】B
【解析】
由已知可分析出函数是偶函数,则其零点必然关于原点对称,故在上所有的零点的和为,则函数在上所有的零点的和,即函数在上所有的零点之和,求出上所有零点,可得答案.
解:函数是定义在上的奇函数,.
又函数,
,
函数是偶函数,
函数的零点都是以相反数的形式成对出现的.
函数在上所有的零点的和为,
函数在上所有的零点的和,即函数在上所有的零点之和.
由时,,
即
函数在上的值域为,当且仅当时,
又当时,
函数在上的值域为,
函数在上的值域为,
函数在上的值域为,当且仅当时,,
函数在上的值域为,当且仅当时,,
故在上恒成立,在上无零点,
同理在上无零点,
依此类推,函数在无零点,
综上函数在上的所有零点之和为8
故选:.
【题目】某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按/次收费,并注册成为会员,对会员逐次消费给予相应优惠,标准如下:
消费次第 | 第次 | 第次 | 第次 | 第次 | 次 |
收费比率 |
该公司注册的会员中没有消费超过次的,从注册的会员中,随机抽取了100位进行统计,得到统计数据如下:
消费次数 | 次 | 次 | 次 | 次 | 次 |
人数 |
假设汽车美容一次,公司成本为元,根据所给数据,解答下列问题:
(1)某会员仅消费两次,求这两次消费中,公司获得的平均利润;
(2)以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为元,求的分布列和数学期望.
【题目】网购已经成为一种新型的购物方式,2018年天猫双11,仅1小时47分钟成交额超过1000亿元,比2017年达到1000亿元的时间缩短了7个小时,为了研究市民对网购的依赖性,从A城市16﹣59岁人群中抽取一个容量为100的样本,得出下列2×2列联表,其中16﹣39岁为青年,40﹣59岁为中年,当日消费金额超过1000元为消费依赖网购,否则为消费不依赖网购.
依赖网购 | 不依赖网购 | 小计 | |
青年(16﹣39岁) | 40 | 20 | |
中年(40﹣59岁) | 20 | 20 | |
小计 |
(1)完成2×2列联表,计算X2值,并判断是否有95%的把握认为网购依赖和年龄有关?
(2)把样本中的频率当作概率,随机从A城市中选取5人,其中依赖网购的人数为随机变量X,求随机变量X的分布列及期望(附:X2,当X2>3.841时,有95%的把握说事件A与B有关,当X2≤3.841时,没有95%的把握说事件A与B有关)