ÌâÄ¿ÄÚÈÝ
14£®ÔÚÖ±½Ç×ø±êϵxoyÖУ¬Ö±lÏßlµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2-\frac{\sqrt{2}}{2}t}\\{y=6+\frac{\sqrt{2}}{2}t}\end{array}\right.$£¨tΪ²ÎÊý£©£®ÔÚ¼«×ø±êϵ£¨ÓëÖ±½Ç×ø±êϵxoyÈ¡ÏàͬµÄ³¤¶Èµ¥Î»£¬ÇÒÒÔÔµãOΪ¼«µã£¬ÒÔxÖáÕý°ëÖáΪ¼«ÖᣩÖУ¬Ô²CµÄ·½³ÌΪ¦Ñ=10cos¦È£®£¨1£©ÇóÔ²CµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèÔ²CÓëÖ±Ïßl½»ÓÚµãA¡¢B£¬ÈôµãPµÄ×ø±êΪ£¨2£¬6£©£¬Çó|PA|+|PB|£®
·ÖÎö £¨1£©ÓɦÑ=10cos¦ÈµÃ¦Ñ2=10¦Ñcos¦È£¬°Ñ$\left\{\begin{array}{l}{{¦Ñ}^{2}={x}^{2}+{y}^{2}}\\{x=¦Ñcos¦È}\end{array}\right.$´úÈë¼´¿ÉµÃ³ö£®
£¨2£©½«lµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄÖ±½Ç×ø±ê·½³Ì£¬»¯Îª${t}^{2}+9\sqrt{2}t+20$=0£¬¿ÉÉèt1£¬t2ÊÇÉÏÊö·½³ÌµÄÁ½¸öʵ¸ù£®ÀûÓÃ|PA|+|PB|=|t1|+|t2|=-£¨t1+t2£©¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©ÓɦÑ=10cos¦ÈµÃ¦Ñ2=10¦Ñcos¦È£¬
¡àÖ±½Ç×ø±ê·½³ÌΪ£ºx2+y2=10x£¬Å䷽Ϊ£º£¨x-5£©2+y2=25£®
£¨2£©½«lµÄ²ÎÊý·½³Ì´úÈëÔ²CµÄÖ±½Ç×ø±ê·½³Ì£¬»¯Îª${t}^{2}+9\sqrt{2}t+20$=0£¬
ÓÉÓÚ¡÷=$£¨9\sqrt{2}£©^{2}$-4¡Á20=82£¾0£¬¿ÉÉèt1£¬t2ÊÇÉÏÊö·½³ÌµÄÁ½¸öʵ¸ù£®
¡àt1+t2=-$9\sqrt{2}$£¬t1t2=20£¬ÓÖÖ±Ïßl¹ýµãP£¨2£¬6£©£¬
¿ÉµÃ£º|PA|+|PB|=|t1|+|t2|=-£¨t1+t2£©=9$\sqrt{2}$£®
µãÆÀ ±¾Ì⿼²éÁ˲ÎÊý·½³ÌµÄÓ¦Óᢼ«×ø±ê·½³Ì»¯ÎªÖ±½Ç×ø±ê·½³Ì£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
5£®¶ÔÓÚ¼¯ºÏA={x|x=2k+1£¬k¡ÊN}ºÍ¼¯ºÏB={x|x=a*b£¬a£¬b¡ÊA}£¬ÈôÂú×ãB⊆A£¬Ôò¼¯ºÏBÖеÄÔËËã¡°*¡±¿ÉÒÔÊÇ£¨¡¡¡¡£©
A£® | ¼Ó·¨ | B£® | ¼õ·¨ | C£® | ³Ë·¨ | D£® | ³ý·¨ |
9£®ÒÑÖªÖ±½Ç¡÷ABCÖУ¬Ð±±ßAB=6£¬DΪÏ߶ÎABµÄÖе㣬PΪÏ߶ÎCDÉÏÈÎÒâÒ»µã£¬Ôò£¨$\overrightarrow{PA}$+$\overrightarrow{PB}$£©•$\overrightarrow{PC}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£® | -$\frac{9}{2}$ | B£® | $\frac{9}{2}$ | C£® | -2 | D£® | 2 |
3£®ÏÂÁÐÔËËãÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£® | £¨a-b£©2=a2-b2 | B£® | £¨$\frac{1}{3}$£©-1=3 | C£® | £¨-2£©3=8 | D£® | a6-a3=8 |
11£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{£¨3a-1£©x+4a£¬x£¼1}\\{lo{g}_{a}x£¬x¡Ý1}\end{array}\right.$£¬Âú×ã¶ÔÈÎÒâµÄʵÊýx1¡Ùx2£¬¶¼ÓÐ$\frac{f£¨{x}_{1}£©-f£¨{x}_{2}£©}{{x}_{1}-{x}_{2}}$£¼0³ÉÁ¢£¬ÔòʵÊýaµÄÈ¡Öµ·¶Î§ÊÇ£¨¡¡¡¡£©
A£® | £¨0£¬1£© | B£® | £¨0£¬$\frac{1}{3}$£© | C£® | [$\frac{1}{7}$£¬$\frac{1}{3}$£© | D£® | [$\frac{1}{7}$£¬1£© |