题目内容
【题目】如图,在四棱柱中,侧棱底面,,,,,,,()
(1)求证:平面;
(2)若直线与平面所成角的正弦值为,求的值;
(3)现将与四棱柱形状和大小完全相同的两个四棱柱拼成一个新的四棱柱,规定:若拼成的新四棱柱形状和大小完全相同,则视为同一种拼接方案,问共有几种不同的拼接方案?在这些拼接成的新四棱柱中,记其中最小的表面积为,写出的解析式.(直接写出答案,不必说明理由)
【答案】(1)证明见解析
(2)
(3)
【解析】
(1)取得中点,连接,可证明四边形是平行四边形,再利用勾股定理的逆定理可得,即,又侧棱底面,可得,利用线面垂直的判定定理即可证明;
(2)通过建立空间直角坐标系,由线面角的向量公式即可得出;
(3)由题意可与左右平面,,上或下面,拼接得到方案,新四棱柱共有此4种不同方案.写出每一方案下的表面积,通过比较即可得出.
(1)证明:取的中点,连接,
,,
四边形是平行四边形,
,且,,
,,
又,.
侧棱底面,,
,平面.
(2)以为坐标原点,、、的方向为轴的正方向建立空间直角坐标系,则,,,.
,,.
设平面的一个法向量为,
则,取,则,.
.
设与平面所成角为,则
,
解得,故所求.
(3)由题意可与左右平面,,上或下面,拼接得到方案新四棱柱共有此4种不同方案.
写出每一方案下的表面积,通过比较即可得出.
【题目】在新的劳动合同法出台后,某公司实行了年薪制工资结构改革.该公司从2008年起,每人的工资由三个项目构成,并按下表规定实施:
项目 | 金额[元/(人年)] | 性质与计算方法 |
基础工资 | 2007年基础工资为20000元 | 考虑到物价因素,决定从2008年 起每年递增10%(与工龄无关) |
房屋补贴 | 800 | 按职工到公司年限计算,每年递增800元 |
医疗费 | 3200 | 固定不变 |
如果该公司今年有5位职工,计划从明年起每年新招5名职工.
(1)若今年算第一年,将第n年该公司付给职工工资总额y(万元)表示成年限n的函数;
(2)若公司每年发给职工工资总额中,房屋补贴和医疗费的总和总不会超过基础工资总额的p%,求p的最小值.