题目内容
【题目】下列说法中正确的是( )
A.若两个随机变量的线性相关性越强,则相关系数的值越接近于1
B.若正态分布,则
C.把某中学的高三年级560名学生编号:1到560,再从编号为1到10的10名学生中随机抽取1名学生,其编号为,然后抽取编号为,,,…的学生,这样的抽样方法是分层抽样
D.若一组数据0,,3,4的平均数是2,则该组数据的方差是
【答案】D
【解析】
利用线性相关的强弱与相关系数的绝对值的关系可判断A;利用正态分布密度曲线的性质可判断B;利用分层抽样的特征可判断C;利用平均数、方差的运算可判断D.
对于A,两个随机变量的线性相关性越强,则相关系数的绝对值越接近于1,故A错误;
对于B,由正态分布,则正态分布密度曲线关于对称,
即,故B错误;
对于C,1到560,再从编号为1到10的10名学生中随机抽取1名学生,
其编号为,然后等间距抽取编号为,,,…的学生,属于系统抽样,
故C错误;
对于D,一组数据0,,3,4的平均数是2,即,解得,
所以方差为,故D正确.
故选:D
练习册系列答案
相关题目
【题目】某校两个班级100名学生在一次考试中的成绩的频率分布直方图如图所示,其中成绩分组区如下表:
组号 | 第一组 | 第二组 | 第三组 | 第四组 | 第五组 |
分组 |
(1)求频率表分布直方图中a的值;
(2)根据频率表分布直方图,估计这100名学生这次考试成绩的平均分;
(3)现用分层抽样的方法从第三、四、五组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率.