题目内容
【题目】某校两个班级100名学生在一次考试中的成绩的频率分布直方图如图所示,其中成绩分组区如下表:
组号 | 第一组 | 第二组 | 第三组 | 第四组 | 第五组 |
分组 |
(1)求频率表分布直方图中a的值;
(2)根据频率表分布直方图,估计这100名学生这次考试成绩的平均分;
(3)现用分层抽样的方法从第三、四、五组中随机抽取6名学生,将该样本看成一个总体,从中随机抽取2名,求其中恰有1人的分数不低于90分的概率.
【答案】(1)a=0.005;(2)74.5;(3)
【解析】
(1)根据各组的频率之和为1计算即可;
(2)每组的中值与该组频率之积的和即为平均值计算即可;
(3)根据分层抽样得到各组抽出人数,列出基本事件,找到所求事件包含的基本事件个数,利用古典概型求解即可.
(1)由题意得10a+0.01×10+0.02×10+0.03×10+0.035×10=1,所以a=0.005.
(2)由直方图分数在[50,60]的频率为0.05,[60,70]的频率为0.35,[70,80]的频率为0.30,[80,90]的频率为0.20,[90,100]的频率为0.10,所以这100名学生期中考试数学成绩的平均分的估计值为:55×0.05+65×0.35+75×0.30+85×0.20+95×0.10=74.5
(3)由直方图,得:
第3组人数为0.3×100=30,
第4组人数为0.2×100=20人,
第5组人数为0.1×100=10人.
所以利用分层抽样在60名学生中抽取6名学生,
每组分别为:
第3组:人,
第4组:人,
第5组:=1人.
所以第3、4、5组分别抽取3人、2人、1人.
设第3组的3位同学为A1,A2,A3,第4组的2位同学为B1,B2,第5组的1位同学为C1,则从六位同学中抽两位同学有15种可能如下:
(A1,A2),(A1,A3),(A2,A3),(B1,B2),(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A1,C1),(A2,C1),(A3,C1),(B1,C1),(B2,C1),其中恰有1人的分数不低于90(分)的情形有:(A1,C1),(A2,C1),(A3,C1),(B1,C1),(B2,C1),共5种.
所以恰有1人的分数不低于90分的概率为.
【题目】英国“脱欧”这件国际大事引起了社公各界广泛关注,根据最新情况,英国大选之后,预计将会在2020日年1月31日完成“脱欧”,但是因为之前“脱欧”一直被延时,所以很多人认为并不能如期完成,某媒体随机在人群中抽取了100人做调查,其中40岁以下的人群认为能完成的占,而40岁以上的有10人认为不能完成
(1)完成列联表,并回答能否有90%的把握认为“预测国际大事的准确率与年龄有关”?
能完成 | 不能完成 | 合计 | |
40岁以上 | 55 | ||
40岁以下 | |||
合计 |
(2)现按照分层抽样抽取20人,在这20人的样本中,再选取40岁以下的4人做深度调查,至少有2人认为英国能够完成“脱欧”的概率为多少?
附表:
() | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
【题目】疫情过后,某商场开业一周累计生成2万张购物单,从中随机抽出100张,对每单消费金额进行统计得到下表:
消费金额(单位:元) | |||||
购物单张数 | 25 | 25 | 30 | ? | ? |
由于工作人员失误,后两栏数据已无法辨识,但当时记录表明,根据由以上数据绘制成的频率分布直方图所估计出的每单消费额的中位数与平均数恰好相等(用频率估计概率),完成下列问题:
(1)估计该商场开业一周累计生成的购物单中,单笔消费额超过800元的购物单张数;
(2)为鼓励顾客消费,拉动内需,该商场打算在今年国庆期间进行促销活动,凡单笔消费超过600元者,可抽奖一次,中一等奖、二等奖、三等奖的顾客可以分别获得价值元、元、元的奖品.已知中奖率为100%,且一等奖、二等奖、三等奖的中奖率依次构成等差数列,其中一等奖的中奖率为.若今年国庆期间该商场的购物单数量预计比疫情后开业一周的购物单数量增长5%,试预测商场今年国庆期间采办奖品的开销.