题目内容
【题目】根据下列算法语句,将输出的A值依次记为a1 , a2 , …,an , …,a2015;已知函数f(x)=a2sin(ωx+φ)(ω>0,|φ|< )的最小正周期是a1 , 且函数y=f(x)的图象关于直线x= 对称.
(Ⅰ)求函数y=f(x)表达式;
(Ⅱ)已知△ABC中三边a,b,c对应角A,B,C,a=4,b=4 ,∠A=30°,求f(B).
【答案】解:(Ⅰ)由已知,当n≥2时,an=1+3+5+…+(2n﹣1)=n2而a1=1也符合an=n2 , 知a1=1,a2=4,所以函数y=f(x)的最小正周期为1,所以ω=2π,
则f(x)=4sin(2πx+φ),
又函数y=f(x)的图象关于直线x= 对称
所以 +φ=kπ+ (k∈Z),因为|φ|< ,所以φ= ,则f(x)=4sin(2πx+ )
(Ⅱ)由正弦定理计算 ,∴sinB= ,∴B为 或 ,
可得f(B)=4sin( + )或4sin( + )
【解析】(Ⅰ)由已知算法语句可知所求为2015个奇数的和;根据a1=1,a2=4,得到函数的周期,由对称轴x= ,结合|φ|< 得到φ,从而求出三角函数解析式;(Ⅱ)由正弦定理计算B,即可求f(B).
【题目】某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费 (单位:千元)对年销售量 (单位:t)和年利润 (单位:千元)的影响.对近8年的年宣传费和年销售量 (i=1,2,…,8)数据作了初步处理,得到右面的散点图及一些统计量的值.
46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
表中,
(1)根据散点图判断, 与哪一个适宜作为年销售量关于年宣传费的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立关于的回归方程;
(3)已知这种产品的年利润与的关系为.根据(2)的结果回答下列问题:
①年宣传费=49时,年销售量及年利润的预报值是多少?
②年宣传费为何值时,年利润的预报值最大?
附:对于一组数据, …,,其回归直线的斜率和截距的最小二乘估计分别为