题目内容
(本小题满分12分)已知椭圆C:的左、右顶点的坐标分别为,,离心率。
(Ⅰ)求椭圆C的方程:
(Ⅱ)设椭圆的两焦点分别为,,若直线与椭圆交于、两点,证明直线与直线的交点在直线上。
(1)
(2)将直线代入椭圆C的方程并整理.
得.
设直线与椭圆C交点,
由根系数的关系,得.
直线的方程为:,它与直线的交点坐标为
同理可求得直线与直线的交点坐标为.
下面证明、两点重合,即证明、两点的纵坐标相等:
,
因此结论成立.
综上可知.直线与直线的交点住直线上.
(2)将直线代入椭圆C的方程并整理.
得.
设直线与椭圆C交点,
由根系数的关系,得.
直线的方程为:,它与直线的交点坐标为
同理可求得直线与直线的交点坐标为.
下面证明、两点重合,即证明、两点的纵坐标相等:
,
因此结论成立.
综上可知.直线与直线的交点住直线上.
略
练习册系列答案
相关题目