题目内容
(12分)如图7-4,已知△ABC中, ∠ACB=90°,CD⊥AB,且AD=1,BD=2,△ACD绕CD旋转至A′CD,使点A′与点B之间的距离A′B=。
(1)求证:BA′⊥平面A′CD;
(2)求二面角A′-CD-B的大小;
(3)求异面直线A′C与BD所成的角的余弦值。
(1)求证:BA′⊥平面A′CD;
(2)求二面角A′-CD-B的大小;
(3)求异面直线A′C与BD所成的角的余弦值。
解 (1)∵CD⊥AB,
∴CD⊥A′D,CD⊥DB,
∴CD⊥平面A′BD,
∴CD⊥BA′。
又在△A′DB中,A′D=1,DB=2,A′B=,
∴∠BA′D=90°,即BA′⊥A′D,
∴BA′⊥平面A′CD。
(2)∵CD⊥DB,CD⊥A′D,
∴∠BDA′是二面角A′—CD—B的平面角。
又Rt△A′BD中,A′D=1,BD=2,
∴∠A′DB=60°,
即 二面角A′—CD—B为60°。
(3)过A′作A′E∥BD,在平面A′BD中作DE⊥A′E于E,连CE,则∠CA′E为A′C与BD所成角。
∵CD⊥平面A′BD,DE⊥A′E,∴A′E⊥CE。
∵EA′∥AB,∠A′DB=60°,∴∠DA′E=60°,
又A′D=1,∠DEA′=90°,
∴A′E=
又∵在Rt△ACB中,AC==
∴A′C=AC=
∴Rt△CEA′中,cos∠CA′E===,
即异面直线A′C与BD所成角的余弦值为。
∴CD⊥A′D,CD⊥DB,
∴CD⊥平面A′BD,
∴CD⊥BA′。
又在△A′DB中,A′D=1,DB=2,A′B=,
∴∠BA′D=90°,即BA′⊥A′D,
∴BA′⊥平面A′CD。
(2)∵CD⊥DB,CD⊥A′D,
∴∠BDA′是二面角A′—CD—B的平面角。
又Rt△A′BD中,A′D=1,BD=2,
∴∠A′DB=60°,
即 二面角A′—CD—B为60°。
(3)过A′作A′E∥BD,在平面A′BD中作DE⊥A′E于E,连CE,则∠CA′E为A′C与BD所成角。
∵CD⊥平面A′BD,DE⊥A′E,∴A′E⊥CE。
∵EA′∥AB,∠A′DB=60°,∴∠DA′E=60°,
又A′D=1,∠DEA′=90°,
∴A′E=
又∵在Rt△ACB中,AC==
∴A′C=AC=
∴Rt△CEA′中,cos∠CA′E===,
即异面直线A′C与BD所成角的余弦值为。
略
练习册系列答案
相关题目