题目内容
【题目】已知函数,( )是偶函数.
(1)求的值;
(2)设函数,其中.若函数与的图象有且只有一个交点,求的取值范围.
【答案】(1) (2)
【解析】试题分析:(1)由偶函数得,根据对数运算法则化简得的值;(2)化简方程得关于一元二次方程,先讨论时,是否满足条件,再根据实根分布讨论的取值范围.本题也可利用参变分离法,转化为讨论函数交点个数.
试题解析:解:(1)∵()是偶函数,
∴对任意,恒成立
即: 恒成立,∴
(2)由于,所以定义域为,也就是满足
∵函数与的图象有且只有一个交点,
∴方程在上只有一解
即:方程在上只有一解
令,则,因而等价于关于的方程(*)在上只有一解
当时,解得,不合题意;
当时,记,其图象的对称轴
∴函数在上递减,而
∴方程(*)在无解
当时,记,其图象的对称轴
所以,只需,即,此恒成立
∴此时的范围为
综上所述,所求的取值范围为
练习册系列答案
相关题目