题目内容
【题目】如图,在直三棱柱ABC﹣A1B1C1中,AB=4,AC=BC=3,D为AB的中点
(1)求点C到平面A1ABB1的距离;
(2)若AB1⊥A1C,求二面角A1﹣CD﹣C1的平面角的余弦值.
【答案】
(1)解:由AC=BC,D为AB的中点,得CD⊥AB.又CD⊥AA1.
故CD⊥平面A1ABB1.
所以点C到平面A1ABB1的距离为CD= =
(2)解:[解法一]
如图1,取D1为A1B1的中点,连接DD1,则DD1∥AA1∥CC1.
又由(1)知CD⊥平面A1ABB1.故CD⊥A1D,CD⊥D1D,所以∠A1DD1为所求的二面角A1﹣CD﹣C1的平面角.因A1D为A1C在面A1ABB1中的射影,又已知AB1⊥A1C由三垂线定理的逆定理得AB1⊥A1D.从而∠A1AB1、∠A1DA都与∠B1AB互余.因此∠A1AB1=∠A1DA,所以Rt△A1AD∽Rt△B1A1A.因此AA1:AD=A1B1:AA1,即AA12=ADA1B1=8,得AA1=2 ,从而A1D= =2 .所以Rt△A1D1D中,cos∠A1DD1= = =
解法二:如图2,过D作DD1∥AA1交A1B1于D1,在直三棱柱中,有DB,DC,DD1两两垂直,以D为原点,射线DB,DC,DD1分别为X轴、Y轴、Z轴的正半轴建立空间直角坐标系D﹣xyz.
设直三棱柱的高为h,则A(﹣2,0,0),A1(﹣2,0,h),B1(2,0,h),C(0, ,0),C1(0, ,h),从而 =(4,0,h), =(2, ,﹣h)
由AB1⊥A1C,可得8﹣h2=0,h=2 ,故 =(﹣2,0,2), =(0,0,2 ), =(0, ,0)
设平面A1CD的法向量为 =(x1,y1,z1),则有 ⊥ , ⊥
∴ =0且 =0,即 ,取z1=1,则 =( ,0,1)
设平面C1CD的法向量为 =(x2,y2,z2),则 ⊥ , ⊥ ,即 且 =0,取x2=1,得 =(1,0,0),
所以cos< , >= = = ,所以二面角A1﹣CD﹣C1span>的平面角的余弦值
【解析】(1)由题意,由于可证得CD⊥平面A1ABB1 . 故点C到平面的距离即为CD的长度,易求;(2)解法一:由题意结合图象,可通过作辅助线先作出二面角的平面角∠A1DD1 , 然后在直角三角形A1D1D中求出二面角的余弦;
解法二:根据几何体的形状,可过D作DD1∥AA1交A1B1于D1 , 在直三棱柱中,可得DB,DC,DD1两两垂直,则以D为原点,射线DB,DC,DD1分别为X轴、Y轴、Z轴的正半轴建立空间直角坐标系D﹣xyz.给出各点的坐标,分别求出两平面的法向量,求出两向量的夹角即为两平面的夹角.
【题目】某县经济最近十年稳定发展,经济总量逐年上升,下表是给出的部分统计数据:
序号 | 2 | 3 | 4 | 5 | |
年份 | 2008 | 2010 | 2012 | 2014 | 2016 |
经济总量(亿元) | 236 | 246 | 257 | 275 | 286 |
(1)如上表所示,记序号为,请直接写出与的关系式;
(2)利用所给数据求经济总量与年份之间的回归直线方程;
(3)利用(2)中所求出的直线方程预测该县2018年的经济总量.
附:对于一组数据,
其回归直线的斜率和截距的最小二乘估计分别为:
,.