题目内容

【题目】如图所示,已知长方体ABCD﹣A1B1C1D1中,AB=BC=2,AA1=4,E是棱CC1上的点,且BE⊥B1C.

(1)求CE的长;
(2)求证:A1C⊥平面BED;
(3)求A1B与平面BDE夹角的正弦值.

【答案】
(1)解:如图所示,以D为原点,DA、DC、DD1所在直线分别为x、y、z轴建立空间直角坐标系D﹣xyz.

∴D(0,0,0),A(2,0,0),B(2,2,0),C(0,2,0),A1(2,0,4),

B1(2,2,4),C1(0,2,4),D1(0,0,4).

设E点坐标为(0,2,t),则 =(﹣2,0,t), =(﹣2,0,﹣4).

∵BE⊥B1C,∴ =4+0﹣4t=0.

∴t=1,故CE=1


(2)证明:由(1)得,E(0,2,1), =(﹣2,0,1),

=(﹣2,2,﹣4), =(2,2,0)

=4+0﹣4=0,且 =﹣4+4+0=0.

,即A1C⊥DB,A1C⊥BE,

又∵DB∩BE=B,∴A1C⊥平面BDE,即A1C⊥平面BED


(3)解:由(2)知 =(﹣2,2,﹣4)是平面BDE的一个法向量.

=(0,2,﹣4),

∴cos< >= =

∴A1B与平面BDE夹角的正弦值为


【解析】(1)建立空间直角坐标系,求出 ,利用 =0,即可求得结论;(2)证明 ,可得A1C⊥DB,A1C⊥BE,从而可得A1C⊥平面BED;(3)由(2)知 =(﹣2,2,﹣4)是平面BDE的一个法向量,利用向量的夹角公式,即可求A1B与平面BDE夹角的正弦值.
【考点精析】利用直线与平面垂直的判定和空间角的异面直线所成的角对题目进行判断即可得到答案,需要熟知一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直;注意点:a)定理中的“两条相交直线”这一条件不可忽视;b)定理体现了“直线与平面垂直”与“直线与直线垂直”互相转化的数学思想;已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网