题目内容
【题目】已知数列{an}与{bn},若a1=3且对任意正整数n满足an+1﹣an=2,数列{bn}的前n项和Sn=n2+an .
(1)求数列{an},{bn}的通项公式;
(2)求数列{ }的前n项和Tn .
【答案】
(1)解:由题意知数列{an}是公差为2的等差数列,
又∵a1=3,∴an=3+2(n﹣1)=2n+1.
列{bn}的前n项和Sn=n2+an=n2+2n+1=(n+1)2
当n=1时,b1=S1=4;
当n≥2时, .
上式对b1=4不成立.
∴数列{bn}的通项公式: ;
(2)解:n=1时, ;
n≥2时, ,
∴ .
n=1仍然适合上式.
综上,
【解析】(1)由已知可得数列{an}是公差为2的等差数列,由等差数列的通项公式求an;把an代入Sn=n2+an . 利用Sn﹣Sn﹣1=bn(n≥2)求通项公式;(2)首先求出T1 , 当n≥2时,由裂项相消法求数列{ }的前n项和Tn .
【考点精析】本题主要考查了数列的前n项和和数列的通项公式的相关知识点,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.
【题目】福利彩票“双色球”中红球的号码可以从01,02,03,…,32,33这33个二位号码中选取,小明利用如图所示的随机数表选取红色球的6个号码,选取方法是从第1行第9列和第10列的数字开始从左到右依次选取两个数字,则第四个被选中的红色球号码为( )
81 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85 |
06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 49 |
A. 12 B. 33 C. 06 D. 16