题目内容
【题目】已知非零数列满足,.
(1)求证:数列是等比数列;
(2)若关于的不等式有解,求整数的最小值;
(3)在数列中,是否存在首项、第项、第项(),使得这三项依次构成等差数列?若存在,求出所有的;若不存在,请说明理由.
【答案】(1)证明见解析;(2);(3)存在,或.
【解析】
(1)由条件可得,即,再由等比数列的定义即可得证;
(2)由等比数列的通项公式求得,,再由数列的单调性的判断,可得最小值,解不等式即可得到所求最小值;
(3)假设存在首项、第项、第项(),使得这三项依次构成等差数列,由等差数列的中项的性质和恒等式的性质,可得,的方程,解方程可得所求值.
解:(1)证明:由,
得,即,
所以数列是首项为2,公比为2的等比数列;
(2)由(1)可得,,则
故,
设,
则
,
所以单调递增,
则,于是,即 ,
故整数的最小值为;
(3)由上面得,,
设,
要使得成等差数列,即,
即,
得,
,
,
故为偶数,为奇数,
或.
练习册系列答案
相关题目