题目内容
【题目】已知函数f(x)= ,若存在实数a、b、c、d,满足f(a)=f(b)=f(c)=f(d),其中d>c>b>a>0,则abcd的取值范围是( )
A.(16,21)
B.(16,24)
C.(17,21)
D.(18,24)
【答案】B
【解析】解:若存在实数a、b、c、d,满足f(a)=f(b)=f(c)=f(d),其中d>c>b>a>0
根据图象可判断: <a<1,1<b<2,2<c<4,6<d<8,
当直线y=t,0<t<4,可以有4个交点,把直线向上平移,向下平移,可判断:直线越往上走abcd的积越小,越往下abcd的积越大,
当t=0时1×1×4×6=24,当t=4时, =16,abcd的取值范围是(16,24),
故选:B.
练习册系列答案
相关题目
【题目】通过市场调查,得到某种产品的资金投入x(单位:万元)与获得的利润y(单位:万元)的数据,如表所示:
资金投入x | 2 | 3 | 4 | 5 | 6 |
利润y | 2 | 3 | 5 | 6 | 9 |
(1)画出数据对应的散点图;
(2)根据上表提供的数据,用最小二乘法求线性回归直线方程x+;
(3)现投入资金10万元,求获得利润的估计值为多少万元?