题目内容
【题目】已知椭圆C: + =1(a>b>0)的焦距为4,其短轴的两个端点与长轴的一个端点构成正三角形.
(1)求椭圆C的标准方程;
(2)设F为椭圆C的左焦点,T为直线x=﹣3上任意一点,过F作TF的垂线交椭圆C于点P,Q.
①证明:OT平分线段PQ(其中O为坐标原点);
②当 最小时,求点T的坐标.
【答案】
(1)解:依题意有 解得
所以椭圆C的标准方程为 + =1
(2)解:设T(﹣3,t),P(x1,y1),Q(x2,y2),PQ的中点为N(x0,y0),
①证明:由F(﹣2,0),可设直线PQ的方程为x=my﹣2,则PQ的斜率 .
由 (m2+3)y2﹣4my﹣2=0,
所以 ,
于是 ,从而 ,
即 ,则直线ON的斜率 ,
又由PQ⊥TF知,直线TF的斜率 ,得t=m.
从而 ,即kOT=kON,
所以O,N,T三点共线,从而OT平分线段PQ,故得证.
②由两点间距离公式得 ,
由弦长公式得 = = ,
所以 ,
令 ,则 (当且仅当x2=2时,取“=”号),
所以当 最小时,由x2=2=m2+1,得m=1或m=﹣1,此时点T的坐标为(﹣3,1)或(﹣3,﹣1).
【解析】第(1)问中,由正三角形底边与高的关系,a2=b2+c2及焦距2c=4建立方程组求得a2 , b2;第(2)问中,先设点的坐标及直线PQ的方程,利用两点间距离公式及弦长公式将 表示出来,由 取最小值时的条件获得等量关系,从而确定点T的坐标
【考点精析】掌握椭圆的标准方程是解答本题的根本,需要知道椭圆标准方程焦点在x轴:,焦点在y轴:.
【题目】改革开放四十周年纪念币从2018年12月5日起可以开始预约通过市场调查,得到该纪念章每1枚的市场价单位:元与上市时间单位:天的数据如下:
上市时间x天 | 8 | 10 | 32 |
市场价y元 | 82 | 60 | 82 |
根据上表数据,从下列函数:;;中选取一个恰当的函数刻画改革开放四十周年纪念章的市场价y与上市时间x的变化关系并说明理由
利用你选取的函数,求改革开放四十周年纪念章市场价最低时的上市天数及最低的价格.
【题目】苏格兰数学家纳皮尔发明了对数表,这一发明为当时的天文学家处理“大数运算”做出了巨大贡献法国著名数学家和天文学家拉普拉斯曾说过:“对数倍增了天文学家的寿命”比如在下面的部分对数表中,16,256对应的幂指数分别为4,8,幂指数和为12,而12对应的幂4096,因此根据此表,推算( )
x | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | |
x | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
2048 | 4096 | 8192 | 16384 | 32768 | 65536 | 131072 | 262144 | 524288 | 1048576 | |
x | 21 | 22 | 23 | 24 | 25 | |||||
2097152 | 4194304 | 8388608 | 16777216 | 33554432 |
A. 524288 B. 8388608 C. 16777216 D. 33554432