题目内容
【题目】如图,四棱锥P-ABCD的底面ABCD为正方形,,E,F分别是棱PC,AB的中点.
(1)求证:平面PAD;
(2)若,求直线EF与平面PAB所成角的正弦值.
【答案】(1)见解析(2)
【解析】
(1)取PD中点M,连接AM,ME,可证明出,即有,根据线面平行的判定定理,即可证出平面PAD;
(2)连接AC,BD交于点O,以OA,OB,OP所在直线分别为x轴,y轴,z轴,建立如图所示的空间直角坐标系O-xyz,由线面角的向量公式即可求出.
(1)取PD中点M,连接AM,ME,
因为E,M分别是棱PC,PD的中点,
所以,,
因为F是AB的中点,且,
所以,且,即.
故四边形AFEM是平行四边形,从而有.
又因为平面PAD,平面PAD,
所以平面PAD.
(2)连接AC,BD交于点O,连接OP,
由题意得平面ABCD,,
以OA,OB,OP所在直线分别为x轴,y轴,z轴
建立如图所示的空间直角坐标系O-xyz,
则,
,
,
设平面PAB的法向量为.
由得
可取,得.
设EF与平面PAB所成的角为,
所以,
即直线EF与平面PAB所成角的正弦值为.
【题目】已知椭圆:的焦距为,点在椭圆上,且的最小值是(为坐标原点).
(1)求椭圆的标准方程.
(2)已知动直线与圆:相切,且与椭圆交于,两点.是否存在实数,使得?若存在,求出的值;若不存在,请说明理由.
【题目】党的十九大明确把精准脱贫作为决胜全面建成小康社会必须打好的三大攻坚战之一.为坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村脱贫,坚持扶贫同扶智相结合,此帮扶单位考察了甲、乙两种不同的农产品加工生产方式,现对两种生产方式的产品质量进行对比,其质量按测试指标可划分为:指标在区间的为优等品;指标在区间的为合格品,现分别从甲、乙两种不同加工方式生产的农产品中,各自随机抽取100件作为样本进行检测,测试指标结果的频数分布表如下:
甲种生产方式:
指标区间 | ||||||
频数 | 5 | 15 | 20 | 30 | 15 | 15 |
乙种生产方式:
指标区间 | ||||||
频数 | 5 | 15 | 20 | 30 | 20 | 10 |
(1)在用甲种方式生产的产品中,按合格品与优等品用分层抽样方式,随机抽出5件产品,①求这5件产品中,优等品和合格品各多少件;②再从这5件产品中,随机抽出2件,求这2件中恰有1件是优等品的概率;
(2)所加工生产的农产品,若是优等品每件可售55元,若是合格品每件可售25元.甲种生产方式每生产一件产品的成本为15元,乙种生产方式每生产一件产品的成本为20元.用样本估计总体比较在甲、乙两种不同生产方式下,该扶贫单位要选择哪种生产方式来帮助该扶贫村来脱贫?