题目内容

【题目】若函数f(x)=kx2+(k﹣1)x+3是偶函数,则f(x)的递减区间是

【答案】(﹣∞,0]
【解析】解:∵函数f(x)=kx2+(k﹣1)x+3为偶函数,
∴f(﹣x)=f(x),
即f(﹣x)=kx2﹣(k﹣1)x+3=kx2+(k﹣1)x+3
∴﹣(k﹣1)=k﹣1,
即k﹣1=0,
解得k=1,
此时f(x)=x2+3,对称轴为x=0,
∴f(x)的递减区间是(﹣∞,0].
所以答案是:(﹣∞,0].
【考点精析】解答此题的关键在于理解函数单调性的判断方法的相关知识,掌握单调性的判定法:①设x1,x2是所研究区间内任两个自变量,且x1<x2;②判定f(x1)与f(x2)的大小;③作差比较或作商比较,以及对函数奇偶性的性质的理解,了解在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网