题目内容
2.若直线ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0所截得的弦长为4,则$\frac{2}{a}+\frac{3}{b}$的最小值为( )A. | 10 | B. | 4+2$\sqrt{6}$ | C. | 4+2$\sqrt{3}$ | D. | 4$\sqrt{6}$ |
分析 由已知中圆的方程x2+y2+2x-4y+1=0我们可以求出圆心坐标,及圆的半径,结合直线ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0所截得的弦长为4,我们易得到a,b的关系式,再根据基本不等式中1的活用,即可得到答案.
解答 解:圆x2+y2+2x-4y+1=0是以(-1,2)为圆心,以2为半径的圆,
又∵直线ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0所截得的弦长为4,
∴直线过圆心,
∴a+2b=2,
∴$\frac{2}{a}+\frac{3}{b}$=$\frac{1}{2}$($\frac{2}{a}+\frac{3}{b}$)(a+2b)=$\frac{1}{2}$(8+$\frac{4b}{a}$+$\frac{3a}{b}$)≥$\frac{1}{2}$(8+4$\sqrt{3}$)=4+2$\sqrt{3}$,
∴$\frac{2}{a}+\frac{3}{b}$的最小值为4+2$\sqrt{3}$,
故选:C.
点评 本题考查的知识点是直线与圆相交的性质,基本不等式,其中根据已知条件,分析出圆心在已知直线上,进而得到a,b的关系式,是解答本题的关键.
练习册系列答案
相关题目
12.集合M={x|$\frac{x}{x-1}$>0},集合N={x|y=$\sqrt{x}$},则M∩N等于( )
A. | (0,1) | B. | (1,+∞) | C. | (0,+∞) | D. | (0,1)∪(1,+∞) |
10.某工厂于去年下半年对生产工艺进行了改造(每半年为一个生产周期),从去年一年的产品中用随机抽样的方法抽取了容量为50的样本,用茎叶图表示,如图所示.已知每个生产周期内与其中位数误差在±5范围内(含±5)的产品为优质品,与中位数误差在±15范围内(含±15)的产品为合格品(不包括优质品),与中位数误差超过±15的产品为次品.企业生产一件优质品可获利润10元,生产一件合格品可获利润5元,生产一件次品要亏损5元
(Ⅰ)试完成这个样本的50件产品的利润的频率分布表:
(Ⅱ)是否有95%的把握认为“优质品与生产工艺改造有关”.
附:
K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.
(Ⅰ)试完成这个样本的50件产品的利润的频率分布表:
利润(元) | 频数 | 频率 |
10 | 15 | 0.3 |
5 | 21 | 0.42 |
-5 | 14 | 0.28 |
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
7.不等式$\sqrt{2x+1}$>$\sqrt{x+1}$-1的解是( )
A. | [-$\frac{1}{2}$,+∞) | B. | (0,$\frac{1}{2}$) | C. | ($\frac{1}{2}$,+∞] | D. | (0,$\frac{1}{2}$] |