题目内容

7.不等式$\sqrt{2x+1}$>$\sqrt{x+1}$-1的解是(  )
A.[-$\frac{1}{2}$,+∞)B.(0,$\frac{1}{2}$)C.($\frac{1}{2}$,+∞]D.(0,$\frac{1}{2}$]

分析 不等式即$\left\{\begin{array}{l}{2x+1≥0}\\{x+1≥0}\\{\sqrt{2x+1}+1>\sqrt{x+1}}\end{array}\right.$,即 $\left\{\begin{array}{l}{x≥-\frac{1}{2}}\\{2\sqrt{2x+1}>-x-1}\end{array}\right.$,由此求得x的范围.

解答 解:由不等式$\sqrt{2x+1}$>$\sqrt{x+1}$-1,可得$\left\{\begin{array}{l}{2x+1≥0}\\{x+1≥0}\\{\sqrt{2x+1}+1>\sqrt{x+1}}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x≥-\frac{1}{2}}\\{2x+1+2\sqrt{2x+1}+1>x+1}\end{array}\right.$,即 $\left\{\begin{array}{l}{x≥-\frac{1}{2}}\\{2\sqrt{2x+1}>-x-1}\end{array}\right.$ ①.
由于当x≥-$\frac{1}{2}$时,-x-1<0,2$\sqrt{2x+1}$>-x-1恒成立,
解得①的解为 x≥-$\frac{1}{2}$,
故选:A.

点评 本题主要考查根式不等式的解法,体现了等价转化的数学思想,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网