题目内容
7.不等式$\sqrt{2x+1}$>$\sqrt{x+1}$-1的解是( )A. | [-$\frac{1}{2}$,+∞) | B. | (0,$\frac{1}{2}$) | C. | ($\frac{1}{2}$,+∞] | D. | (0,$\frac{1}{2}$] |
分析 不等式即$\left\{\begin{array}{l}{2x+1≥0}\\{x+1≥0}\\{\sqrt{2x+1}+1>\sqrt{x+1}}\end{array}\right.$,即 $\left\{\begin{array}{l}{x≥-\frac{1}{2}}\\{2\sqrt{2x+1}>-x-1}\end{array}\right.$,由此求得x的范围.
解答 解:由不等式$\sqrt{2x+1}$>$\sqrt{x+1}$-1,可得$\left\{\begin{array}{l}{2x+1≥0}\\{x+1≥0}\\{\sqrt{2x+1}+1>\sqrt{x+1}}\end{array}\right.$,
∴$\left\{\begin{array}{l}{x≥-\frac{1}{2}}\\{2x+1+2\sqrt{2x+1}+1>x+1}\end{array}\right.$,即 $\left\{\begin{array}{l}{x≥-\frac{1}{2}}\\{2\sqrt{2x+1}>-x-1}\end{array}\right.$ ①.
由于当x≥-$\frac{1}{2}$时,-x-1<0,2$\sqrt{2x+1}$>-x-1恒成立,
解得①的解为 x≥-$\frac{1}{2}$,
故选:A.
点评 本题主要考查根式不等式的解法,体现了等价转化的数学思想,属于中档题.
练习册系列答案
相关题目
18.设F1,F2分别为双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的离心率为( )
A. | $\frac{5}{3}$ | B. | $\frac{5}{4}$ | C. | $\sqrt{2}$ | D. | 2 |
2.若直线ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0所截得的弦长为4,则$\frac{2}{a}+\frac{3}{b}$的最小值为( )
A. | 10 | B. | 4+2$\sqrt{6}$ | C. | 4+2$\sqrt{3}$ | D. | 4$\sqrt{6}$ |