题目内容
10.某工厂于去年下半年对生产工艺进行了改造(每半年为一个生产周期),从去年一年的产品中用随机抽样的方法抽取了容量为50的样本,用茎叶图表示,如图所示.已知每个生产周期内与其中位数误差在±5范围内(含±5)的产品为优质品,与中位数误差在±15范围内(含±15)的产品为合格品(不包括优质品),与中位数误差超过±15的产品为次品.企业生产一件优质品可获利润10元,生产一件合格品可获利润5元,生产一件次品要亏损5元(Ⅰ)试完成这个样本的50件产品的利润的频率分布表:
利润(元) | 频数 | 频率 |
10 | 15 | 0.3 |
5 | 21 | 0.42 |
-5 | 14 | 0.28 |
附:
P(K2≥k) | 0.050 | 0.010 | 0.001 |
k | 3.841 | 6.635 | 10.828 |
分析 (Ⅰ)确定上、下半年的数据,可得“中位数”,优质品,合格品,次品的个数,可得频率分布表;
(Ⅱ)求出K2,与临界值比较,即可得出是否有95%的把握认为“优质品与生产工艺改造有关”.
解答 解:(Ⅰ)上半年的数据为:43,44,48,51,52,56,57,59,61,64,65,65,65,68,72,73,75,76,76,83,84,87,88,91,93其“中位数”为65,优质品有6个,合格品有10个,次品有9个.下半年的数据为:43,49,50,54,54,58,59,60,61,62,63,63,65,66,67,70,71,72,72,73,77,79,81,88,92其“中位数”为65,优质品有9个,合格品有11个,次品有5个.则这个样本的50件产品的利润的频率分布表为:
利润 | 频数 | 频率 |
10 | 15 | 0.3 |
5 | 21 | 0.42 |
-5 | 14 | 0.28 |
(Ⅱ)由题意得:
上半年 | 下半年 | ||
优质品 | 6 | 9 | 15 |
非优质品 | 19 | 16 | 35 |
25 | 25 | 50 |
由于0.857<3.841所以没有95%的把握认为“优质品与生产工艺改造有关”.…(12分)
点评 本题考查利润的频率分布表,考查独立性检验的运用,考查学生的计算能力,比较基础.
练习册系列答案
相关题目
20.在△ABC中,角A,B,C的对边分别是a,b,c,若点(a,b)在直线x(sinA-sinB)+ysinB=csinC上,则角C的值为( )
A. | $\frac{2π}{3}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{π}{6}$ |
18.设F1,F2分别为双曲线$\frac{{x}^{2}}{{a}^{2}}$$-\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,若在双曲线右支上存在点P,满足|PF2|=|F1F2|,且F2到直线PF1的距离等于双曲线的实轴长,则该双曲线的离心率为( )
A. | $\frac{5}{3}$ | B. | $\frac{5}{4}$ | C. | $\sqrt{2}$ | D. | 2 |
2.若直线ax-by+2=0(a>0,b>0)被圆x2+y2+2x-4y+1=0所截得的弦长为4,则$\frac{2}{a}+\frac{3}{b}$的最小值为( )
A. | 10 | B. | 4+2$\sqrt{6}$ | C. | 4+2$\sqrt{3}$ | D. | 4$\sqrt{6}$ |