题目内容
【题目】 某个集团公司下属的甲、乙两个企业在2014年1月的产值都为a万元,甲企业每个月的产值与前一个月相比增加的产值相等,乙企业每个月的产值与前一个月相比增加的百分数相等,到2015年1月两个企业的产值再次相等.
(1)试比较2014年7月甲、乙两个企业产值的大小,并说明理由.
(2)甲企业为了提高产能,决定投入3.2万元买台仪器,并且从2015年2月1日起投入使用.从启用的第一天起连续使用,第n天的维修保养费为元(n∈N*),求前n天这台仪器的日平均耗资(含仪器的购置费),并求日平均耗资最小时使用的天数?
【答案】(1) 到7月份甲企业的产值比乙企业的产值要大.(2) 日平均耗资最小时使用了800天.
【解析】
试题(1)按等差数列性质得2014年7月甲产值,按等比数列性质得2014年7月乙产值,再根据基本不等式比较两者大小(2)根据等差数列求和公式得n天的维修保养费总和,与3.2相加得总费用,除以n得日平均耗资,最后根据基本不等式求最值
试题解析:解:(1)设从2014年1月到2015年1月甲企业每个月的产值分别为a1,a2,a3,…,a13,乙企业每个月的产值分别为b1,b2,…,b13.由题意{an}成等差数列,{bn}成等比数列,所以a7= (a1+a13),b7=,
因为a1=b1,a13=b13,从而a7= (a1+a13)>==b7,
所以到7月份甲企业的产值比乙企业的产值要大.
(2)设一共使用了n天,n天的平均耗资
P(n)==
=
++≥2+= (元),
当且仅当=时,取得最小值,此时n=800,即日平均耗资最小时使用了800天.
【题目】某港口有一个泊位,现统计了某月100艘轮船在该泊位停靠的时间(单位:小时),如果停靠时间不足半小时按半小时计时,超过半小时不足1小时按1小时计时,以此类推,统计结果如表:
停靠时间 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 |
轮船数量 | 12 | 12 | 17 | 20 | 15 | 13 | 8 | 3 |
(Ⅰ)设该月100艘轮船在该泊位的平均停靠时间为小时,求的值;
(Ⅱ)假定某天只有甲、乙两艘轮船需要在该泊位停靠小时,且在一昼夜的时间段中随机到达,求这两艘轮船中至少有一艘在停靠该泊位时必须等待的概率.
【题目】某地电影院为了了解当地影迷对快要上映的一部电影的票价的看法,进行了一次调研,得到了票价x(单位:元)与渴望观影人数y(单位:万人)的结果如下表:
x(单位:元) | 30 | 40 | 50 | 60 |
y(单位:万人) | 4.5 | 4 | 3 | 2.5 |
(1)若y与x具有较强的相关关系,试分析y与x之间是正相关还是负相关;
(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程;
(3)根据(2)中求出的线性回归方程,预测票价定为多少元时,能获得最大票房收入.
参考公式:,.
【题目】传承传统文化再掀热潮,央视科教频道以诗词知识竞赛为主的《中国诗词大会》火爆荧屏.某机构组织了一场诗词知识竞赛,将中学组和大学组的参赛选手按成绩分为优秀、良好、一般三个等级,从中随机抽取100名选手进行调查,如图是根据调查结果绘制的选手等级与人数的条形图.
(1)若将一般等级和良好等级合称为合格等级,根据已知条件完成下面的2×2列联表,并据此判断能否在犯错误的概率不超过0.05的前提下认为选手成绩优秀与文化程度有关?
优秀 | 合格 | 总计 | |
大学组 | |||
中学组 | |||
总计 |
(2)若参赛选手共6万名,用频率估计概率,试估计其中优秀等级的选手人数;
(3)在优秀等级的选手中选取6名,在良好等级的选手中选取6名,都依次编号为1,2,3,4,5,6,在选出的6名优秀等级的选手中任取一名,记其编号为a,在选出的6名良好等级的选手中任取一名,记其编号为b,求使得方程组有唯一一组实数解(x,y)的概率.
参考公式:,其中.
参考数据:
P(K2≥k0) | 0.10 | 0.05 | 0.01 |
k0 | 2.706 | 3.841 | 6.635 |