题目内容
【题目】莱市在市内主于道北京路一侧修建圆形休闲广场.如图,圆形广场的圆心为,半径为,并与北京路一边所在直线相切于点.点为上半圆弧上一点,过点作的垂线,垂足为点.市园林局计划在内进行绿化,设的面积为(单位:),(单位:弧度).
(1)将表示为的函数;
(2)当绿化面积最大时,试确定点的位置,并求最大面积.
【答案】(1)(2)点到北京路一边的距离为;最大值
【解析】
(1)利用三角函数的定义求出,的长,利用三角形的面积公式求出的面积
(2)对求导,令导函数为0求出根,判断根左右两边导函数的符号,求出的最大值.
解:(1)如图,,
则
.
(2)
.令,
得或(舍去),
此时
当变化时,,的变化情况如下表:
极大值 |
所以,当时,取得最大值,此时,即点到北京路一边的距离为.
练习册系列答案
相关题目
【题目】2018年2月9-25日,第23届冬奥会在韩国平昌举行.4年后,第24届冬奥会将在中国北京和张家口举行.为了宣传冬奥会,某大学在平昌冬奥会开幕后的第二天,从全校学生中随机抽取了120名学生,对是否收看平昌冬奥会开幕式情况进行了问卷调查,统计数据如下:
收看 | 没收看 | |
男生 | 60 | 20 |
女生 | 20 | 20 |
(Ⅰ)根据上表说明,能否有的把握认为,收看开幕式与性别有关?
(Ⅱ)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法选取8人,参加2022年北京冬奥会志愿者宣传活动.
(ⅰ)问男、女学生各选取多少人?
(ⅱ)若从这8人中随机选取2人到校广播站开展冬奥会及冰雪项目宣传介绍,求恰好选到一名男生一名女生的概率P.
附:,其中.