题目内容

【题目】某工厂生产甲、乙两种产品,已知生产每吨甲、乙两种产品所需煤、电力、劳动力、获得利润及每天资源限额(量大供应量)如下表所示:

资源\消耗量\产品

甲产品(每吨)

乙产品(每吨)

资源限额(每天)

煤(t)

9

4

360

电力(kwh)

4

5

200

劳动力(个)

3

10

300

利润(万元)

6

12

问:每天生产甲、乙两种产品各多少吨,获得利润总额最大?

【答案】解:设此工厂应分别生产甲、乙两种产品x吨、y吨.获得利润z万元
依题意可得约束条件:
利润目标函数z=6x+12y
如图,作出可行域,作直线l:z=6x+12y,把直线l向右上方平移至l1位置,直线经过可行域上的点M,且与原点距离最大,此时z=6x+12y取最大值.
解方程组 ,得M(20,24)
所以生产甲种产品20t,乙种产品24t,才能使此工厂获得最大利润

【解析】先设每天生产甲x吨,乙y吨,列出约束条件,再建立目标函数,然后求得最优解,即求得利润的最大值和最大值的状态.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网