题目内容
17.冶炼某种金属可以用旧设备和改造后的新设备,为了检验用这两种设备生产的产品中所含杂质的关系,调查结果如下表所示.杂质高 | 杂质低 | |
旧设备 | 37 | 121 |
新设备 | 22 | 202 |
A. | 含杂质的高低与设备改造有关 | B. | 含杂质的高低与设备改造无关 | ||
C. | 设备是否改造决定含杂质的高低 | D. | 以上答案都不对 |
分析 根据所给的数据写出列联表,把列联表的数据代入观测值的公式,求出两个变量之间的观测值,把观测值同临界值表中的数据进行比较,得到有99%的把握认为含杂质的高低与设备是否改造是有关的.
解答 解:由已知数据得到如下2×2列联表
杂质高 | 杂质低 | 合计 | |
旧设备 | 37 | 121 | 158 |
新设备 | 22 | 202 | 224 |
合计 | 59 | 323 | 382 |
由于13.11>6.635,故有99%的把握认为含杂质的高低与设备是否改造是有关的.
点评 本题考查独立性检验,考查写出列联表,这是一个基础题.
练习册系列答案
相关题目
7.已知函数f(x)的部分图象如图所示.向图中的矩形区域随机投出100粒豆子,记下落入阴影区域的豆子数.通过10次这样的试验,算得落入阴影区域的豆子的平均数约为33,由此可估计${∫}_{0}^{1}$f(x)dx的值约为( )
A. | $\frac{99}{100}$ | B. | $\frac{3}{10}$ | C. | $\frac{9}{10}$ | D. | $\frac{10}{11}$ |
8.已知关于x的方程x2-(bcosA)x+acosB=0的两根之积等于两根之和,且边a,b为△ABC的两内角A,B所对的边,则△ABC是( )
A. | 等腰三角形 | B. | 等边三角形 | C. | 直角三角形 | D. | 等腰直角三角形 |
5.若数列{an}的通项公式是an=2×(-3)n,则该数列是( )
A. | 公比为-3的等比数列 | B. | 公比为2的等比数列 | ||
C. | 公比为3的等比数列 | D. | 首项为2的等比数列 |
7.已知命题p:?x∈R,2x<3x;命题q:?x∈R,使得log0.5x=x,则下列命题中为真命题的是( )
A. | p∧q | B. | ¬p∧q | C. | p∧¬q | D. | ¬p∧¬q |
4.若$a={log_{\frac{1}{3}}}2,b={2^{\frac{1}{3}}},c={(\frac{1}{3})^{-\frac{1}{2}}}$,则( )
A. | a<b<c | B. | b<c<a | C. | c<a<b | D. | c<b<a |
5.已知a=2+$\sqrt{3}$,b=1+$\sqrt{6}$,c=$\sqrt{2}$+$\sqrt{5}$,则a,b,c的大小关系为( )
A. | a>b>c | B. | c>a>b | C. | a>c>b | D. | c>b>a |