题目内容

已知等差数列{an},公差d>0,前n项和为Sn,S3=6,且满足a3-a1,2a2,a8成等比数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=
1
anan+2
,求数列{bn}的前n项和Tn的值.
(Ⅰ)由S3=6,a3-a1,2a2,a8成等比数列,得
3a1+3d=6
4(a1+d)2=2d(a1+7d)
,即
a1+d=2
2a12+3a1d-5d2=0

解得:
a1=
10
3
d=-
4
3
a1=1
d=1

∵d>0,
a1=1
d=1

∴an=a1+(n-1)d=1+1×(n-1)=n;
(Ⅱ)bn=
1
anan+2
=
1
n(n+2)
=
1
2
(
1
n
-
1
n+2
)

∴Tn=b1+b2+…+bn=
1
2
(1-
1
3
+
1
2
-
1
4
+
1
3
-
1
5
+…+
1
n
-
1
n+2
)

=
1
2
(1+
1
2
-
1
n+1
-
1
n+2
)=
3
4
-
1
2(n+1)
-
1
2(n+2)
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网