题目内容
已知等差数列{an},公差d>0,前n项和为Sn,S3=6,且满足a3-a1,2a2,a8成等比数列.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=
,求数列{bn}的前n项和Tn的值.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=
1 |
an•an+2 |
(Ⅰ)由S3=6,a3-a1,2a2,a8成等比数列,得
,即
,
解得:
或
.
∵d>0,
∴
.
∴an=a1+(n-1)d=1+1×(n-1)=n;
(Ⅱ)bn=
=
=
(
-
).
∴Tn=b1+b2+…+bn=
(1-
+
-
+
-
+…+
-
)
=
(1+
-
-
)=
-
-
.
|
|
解得:
|
|
∵d>0,
∴
|
∴an=a1+(n-1)d=1+1×(n-1)=n;
(Ⅱ)bn=
1 |
an•an+2 |
1 |
n(n+2) |
1 |
2 |
1 |
n |
1 |
n+2 |
∴Tn=b1+b2+…+bn=
1 |
2 |
1 |
3 |
1 |
2 |
1 |
4 |
1 |
3 |
1 |
5 |
1 |
n |
1 |
n+2 |
=
1 |
2 |
1 |
2 |
1 |
n+1 |
1 |
n+2 |
3 |
4 |
1 |
2(n+1) |
1 |
2(n+2) |
练习册系列答案
相关题目