题目内容
已知数列{an}的前n项和为Sn,其中a1=
,5Sn=7an-an-1+5Sn-1(n≥2);等差数列{bn},其中b3=2,b5=6,.
(1)求数列{an}的通项公式;
(2)若cn=(bn+3)an,求数列{cn}的前n项和Tn.
1 |
2 |
(1)求数列{an}的通项公式;
(2)若cn=(bn+3)an,求数列{cn}的前n项和Tn.
(1)∵5Sn=7an-an-1+5Sn-1(n≥2);
∴5Sn-5Sn-1=7an-an-1,
∴2an=an-1,
=
,
即数列{an}是公比q=
的等比数列,
∵a1=
,∴an=
(
)n-1=
.
(2)在等差数列{bn},
∵b3=2,b5=6,
∴
,解得
,
∴bn=-2+2(n-1)=2n-4,
∵cn=(bn+3)an,
∴cn=(bn+3)an=(2n-1)•
∴
,
两式作差得:
∴
Tn=
+2×(
+
+…+
)-(2n-1)×
=
+
-(2n-1)×
,
∴Tn=3-
.
∴5Sn-5Sn-1=7an-an-1,
∴2an=an-1,
an |
an-1 |
1 |
2 |
即数列{an}是公比q=
1 |
2 |
∵a1=
1 |
2 |
1 |
2 |
1 |
2 |
1 |
2n |
(2)在等差数列{bn},
∵b3=2,b5=6,
∴
|
|
∴bn=-2+2(n-1)=2n-4,
∵cn=(bn+3)an,
∴cn=(bn+3)an=(2n-1)•
1 |
2n |
∴
|
两式作差得:
∴
1 |
2 |
1 |
2 |
1 |
22 |
1 |
23 |
1 |
2n |
1 |
2n+1 |
1 |
2 |
2×
| ||||
1-
|
1 |
2n+1 |
∴Tn=3-
2n+3 |
2n |
练习册系列答案
相关题目