题目内容
如图,为多面体,平面与平面垂直,点在线段上,△OAB,,△,△,△都是正三角形。
(Ⅰ)证明直线∥;
(II)求棱锥F—OBED的体积。
(Ⅰ)证明直线∥;
(II)求棱锥F—OBED的体积。
(1)见解析;(2)
第一问中运用线面平行的性质定理,可以求证线线平行,结合了三角形的中位线定理。第二问中,求解棱锥的体积问题,一般就是求解底面积和高即可。先建立空间直角坐标系,然后表示三角形的面积,,,结合向量的关系式得到体积公式。
解:
(I)(综合法)
证明:设G是线段DA与EB延长线的交点. 由于△OAB与△ODE都是正三角形,所以
OB∥1/2DE,OB =1/2DE,OG=OD=2, 同理,设G’是线段DA与线段FC延长线的交点,有OG’=OD=2
又由于G和G’都在线段DA的延长线上,所以G与G’重合.
在△GED和△GFD中,由
OB∥1/2DE,OB =1/2DE和OC∥1/2DF,OC=1/2DF可知B和C分别是GE和GF的中点,所以BC是△GEF的中位线,故BC∥EF.
(向量法)
过点F作FQAD,交AD于点Q,连QE,由平面ABED⊥平面ADFC,知FQ⊥平面ABED,以Q为坐标原点,QE为X轴正向,QD为y轴正向,DF为z轴正向,建立如图所示空间直角坐标系.
由条件知
则有
所以即得BC∥EF.
(II)解:由OB=1,OE=2,,而△OED是边长为2的正三角形,故
所以
过点F作FQ⊥AD,交AD于点Q,由平面ABED⊥平面ACFD知,FQ就是四棱锥F—OBED的高,且FQ=,所以
解:
(I)(综合法)
证明:设G是线段DA与EB延长线的交点. 由于△OAB与△ODE都是正三角形,所以
|
又由于G和G’都在线段DA的延长线上,所以G与G’重合.
在△GED和△GFD中,由
|
(向量法)
过点F作FQAD,交AD于点Q,连QE,由平面ABED⊥平面ADFC,知FQ⊥平面ABED,以Q为坐标原点,QE为X轴正向,QD为y轴正向,DF为z轴正向,建立如图所示空间直角坐标系.
由条件知
则有
所以即得BC∥EF.
(II)解:由OB=1,OE=2,,而△OED是边长为2的正三角形,故
所以
过点F作FQ⊥AD,交AD于点Q,由平面ABED⊥平面ACFD知,FQ就是四棱锥F—OBED的高,且FQ=,所以
练习册系列答案
相关题目