题目内容
【题目】已知函数
(Ⅰ)当时,求曲线在点处的切线方程;
(Ⅱ)若对恒成立,求的取值范围;
(Ⅲ)证明:若存在零点,则在区间上仅有一个零点.
【答案】(Ⅰ)(Ⅱ)(Ⅲ)见解析
【解析】
(Ⅰ)求得时的导数,可得切线的斜率和切点,可得切线方程;(Ⅱ)若对恒成立,即为对恒成立,设,求得导数和单调性、极大值即最大值,可得的范围;(Ⅲ)若存在零点,即关于的方程有解,可得有解,由的单调性,即可得证.
(Ⅰ)当时,,
所以,
所以切线方程为
(Ⅱ)对恒成立
等价于,即恒成立
设,则
由解得
与在区间上的情况如下
0 | |||
增 | 极大 | 减 |
所以函数的单调增区间是,单调减区间是.
函数在处取得极大值(也是最大值)
所以,即的取值范围是
(Ⅲ)若函数存在零点,则关于的方程有解,
即方程有解,
由(Ⅱ)可知函数的单调增区间是,单调减区间是,
因为,所以当时,,
又因为当时,,
所以若方程有解,则在上仅有一个解,
即若存在零点,则在上仅有一个零点.
【题目】以下是某地区不同身高的未成年男性的体重平均值表.
身高/ | 60 | 70 | 80 | 90 | 100 | 110 |
体重/ | 6.13 | 7.9 | 9.99 | 12.15 | 15.02 | 17.5 |
身高/ | 120 | 130 | 140 | 150 | 160 | 170 |
体重/ | 20.92 | 26.86 | 31.11 | 38.85 | 42.25 | 55.05 |
(1)给出两个回归方程:
①,②.通过计算,得到它们的相关指数分别是:,.试问哪个回归方程拟合效果更好?
(2)若体重超过相同身高男性平均值的1.2倍为偏胖,低于0.8为偏瘦,那么该地区某中学一男生身高为,体重为,他的体重是否正常?
【题目】已知某校5个学生的数学和物理成绩如下:
学生的编号 | 1 | 2 | 3 | 4 | 5 |
数学成绩 | 80 | 75 | 70 | 65 | 60 |
物理成绩 | 70 | 66 | 68 | 64 | 62 |
(1)通过大量事实证明发现,一个学生的数学成绩和物理成绩是具有很强的线性相关关系的,在上述表格中,用表示数学成绩,用表示物理成绩,求关于的回归方程.
(2)利用残差分析回归方程的拟合效果,若残差和在范围内,则称回归方程为“优拟方程”,问:该回归方程是否为“优拟方程”.
(3)现从5名同学中任选两人参加访谈活动,求1号同学没被选中的概率.
附:对于一组数据,,…,,其回归直线的斜率和截距的最小二乘估计分别为:,.