题目内容
.设函数f(x)=
,其中向量
="(2cosx,1),"
=(cosx,
sin2x), x∈R.
(1) 求f(x)的最小正周期;并求![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230642722333.png)
的值域和单调区间;
(2)在△ABC中,a、b、c分别是角A、B、C的对边,f(A)=2,a=
,b+c=3(b>c),求b、c的长.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230642613465.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230642675352.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230642691310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230642707337.png)
(1) 求f(x)的最小正周期;并求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230642722333.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230642753559.png)
(2)在△ABC中,a、b、c分别是角A、B、C的对边,f(A)=2,a=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230642707337.png)
(1)f(x)的最小正周期为π. (2)
。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230642785638.png)
本试题主要是考查了向量的数量积公式的运用和三角函数的性质的综合运用。以及解三角形的运用。
(1)因为f(x)=2cos
x+
sin2x=1+2sin(2x+
根据周期公式可知f(x)的最小正周期为π
(2)∵f(A)=2,即1+2sin(2A+
=2,
∴sin(2A+
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230643065336.png)
结合角A的范围得到2A+
=
.,结合余弦定理得到角A。
并得到b,c的值。
(1)f(x)=2cos
x+
sin2x=1+2sin(2x+![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230643003484.png)
∴f(x)的最小正周期为π.
(2)∵f(A)=2,即1+2sin(2A+
=2,
∴sin(2A+
=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230643065336.png)
∵
<2A+
<
∴2A+
=
.
由cosA=
=
即(b+c)
-a
=3bc,
∴bc=2.又b+c=3(b>c), ∴![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230642785638.png)
(1)因为f(x)=2cos
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230642972242.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230642707337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230643003484.png)
(2)∵f(A)=2,即1+2sin(2A+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230643003484.png)
∴sin(2A+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230643003484.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230643065336.png)
结合角A的范围得到2A+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230643081423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230643112492.png)
并得到b,c的值。
(1)f(x)=2cos
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230642972242.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230642707337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230643003484.png)
∴f(x)的最小正周期为π.
(2)∵f(A)=2,即1+2sin(2A+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230643003484.png)
∴sin(2A+
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230643003484.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230643065336.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230643081423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230643081423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230643487549.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230643081423.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230643112492.png)
由cosA=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230643065336.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230643580755.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230642972242.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230642972242.png)
∴bc=2.又b+c=3(b>c), ∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823230642785638.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目