题目内容
(本小题14分)已知△ABC的角A、B、C所对的边分别为a,b,c,设向量,向量,向量p=(b-2,a-2)
(1)若∥,求证△ABC为等腰三角形;
(2)若⊥,边长c=2, , 求 △ABC的面积.
(1)若∥,求证△ABC为等腰三角形;
(2)若⊥,边长c=2, , 求 △ABC的面积.
(1)见解析。(2)
试题分析:(1)证明:∵m∥n,∴asinA=bsinB.
由正弦定理得a2=b2,a=b,∴△ABC为等腰三角形 ……………………6分
(2)∵m⊥p,∴m·p=0.即a(b-2)+b(a-2)=0
∴a+b=ab. ……………………8分
由余弦定理得4=a2+b2-ab=(a+b)2-3ab
即(ab)2-3ab-4=0,∴ab=4或ab=-1(舍)
∴S△ABC=absinC=×4×sin=……………………14分
点评:三角函数和向量相结合往往是第一道大题,一般较为简单,应该是必得分的题目。而有些同学在学习中认为这类题简单,自己一定会,从而忽略了对它的练习,因此导致考试时不能得满分,甚至不能得分。因此我们在平常训练的时候就要要求自己“会而对,对而全”。
练习册系列答案
相关题目