题目内容
【题目】如图,△ABC与△A1B1C1不全等,且A1B1∥AB,B1C1∥BC,C1A1∥CA.求证:AA1,BB1,CC1交于一点.
【答案】见解析
【解析】试题分析:先根据条件确定两直线相交,设交于一点,再利用两平面的公共点必在这两平面交线上证交点在第三条直线上
试题解析:如图所示,因为A1B1∥AB,
所以A1B1与AB确定一平面,记为平面α.
同理,将B1C1与BC所确定的平面记为平面β,C1A1与CA所确定的平面记为平面γ.
易知β∩γ=C1C.
又△ABC与△A1B1C1不全等,
所以AA1与BB1相交,设交点为P,P∈AA1,P∈BB1.
而AA1γ,BB1β,所以P∈γ,P∈β,
所以P在平面β与平面γ的交线上.
又β∩γ=C1C,所以P∈C1C,
所以AA1,BB1,CC1交于一点.
练习册系列答案
相关题目
【题目】某项科研活动共进行了5次试验,其数据如下表所示:
特征量 | 第1次 | 第2次 | 第3次 | 第4次 | 第5次 |
555 | 559 | 551 | 563 | 552 | |
601 | 605 | 597 | 599 | 598 |
(1)从5次特征量的试验数据中随机地抽取两个数据,求至少有一个大于600的概率;
(2)求特征量关于的线性回归方程;并预测当特征量为570时特征量的值.
(附:回归直线的斜率和截距的最小二乘法估计公式分别为, )