题目内容

已知坐标平面内.动点P与外切与内切.
(1)求动圆心P的轨迹的方程;
(2)若过D点的斜率为2的直线与曲线交于两点A、B,求AB的长;
(3)过D的动直线与曲线交于A、B两点,线段中点为M,求M的轨迹方程.
(1);(2);(3)

试题分析:(1)由圆的内切与外切的圆心距与圆的半径的关系,根据椭圆的定义可求出椭圆的方程.
(2)由过点D的直线及斜率可写出该直线方程.再联立椭圆方程即可得通过弦长公式即可求得AB弦的长度.
(3)有点差法可得到一个关于中点坐标和斜率的关系的等式,同时再利用斜率的另一种表示形式,就如中点与点D再得到斜率的一个等式,消去相应的k从而可得一个关于中点x,y的一个等式.即为所求的中点的轨迹方程.
试题解析:(1)依题意可得,当令动圆半径为r时,有,易得.由椭圆的定义可知,点P的轨迹是以C(-1,0)、D(1,0)为焦点的椭圆.令椭圆方程为.所以点P的轨迹方程为.
(2)过点D斜率为2的直线方程为:,消去y得到.所以.
(3)据点差法结果可知
若令M坐标为(x,y),则有 ,化简可得:
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网