题目内容
(本小题满分12分)已知中心在原点的椭圆
的离心率
,一条准线方程为![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117785562.png)
(1)求椭圆
的标准方程;
(2)若以
>0)为斜率的直线
与椭圆
相交于两个不同的点
,且线段
的垂直平分线与两坐标轴围成的三角形的面积为
,求
的取值范围。
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117754313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117770537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117785562.png)
(1)求椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117754313.png)
(2)若以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117817399.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117817280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117754313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117848550.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117863513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117879470.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117895312.png)
(1)
;(2)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117926684.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117910710.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117926684.png)
试题分析:(1)因为椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117754313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117770537.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117785562.png)
(2)假设直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117973658.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117988424.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118004448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118019310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118035266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118004448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118004448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117863513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118004448.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118097337.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117895312.png)
试题解析:(1)由已知设椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117754313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118144766.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118160349.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118175299.png)
由题设得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240321181911099.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118207733.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118222643.png)
所以椭圆
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117754313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117910710.png)
(2)由题意设直线
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117817280.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118378598.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117895312.png)
由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240321184091132.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118019310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240321184411252.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118456700.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118472675.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118487996.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118503455.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118534724.png)
线段
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117863513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118550569.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240321185811074.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240321185971065.png)
从而线段
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117863513.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240321186121222.png)
此直线与
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118035266.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118019310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240321186591053.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240321186751006.png)
由题设可得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240321186901346.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118721983.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117895312.png)
由题意在①中有
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240321187531208.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118768654.png)
将②代入得
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118784955.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117895312.png)
即
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118815950.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118831679.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118846657.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032118846330.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117895312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117895312.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824032117926684.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目