题目内容
【题目】在直角坐标系中,曲线的参数方程为(为参数),若以该直角坐标系的原点为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为(其中为常数).
(1)求曲线和的直角坐标方程;
(2)若曲线和有且仅有一个公共点,求的取值范围.
【答案】(1);(2)
【解析】
(1)根据三角恒等变换,把函数关系式变形,再通过消元求出函数的普通方程,根据,可将极坐标方程转化为直角坐标方程;
(2)联立方程进行化简得到,作出的图象,数形结合分析出与二次函数有一个交点时,的取值范围.
(1)由,可知曲线的直角坐标方程为,
其中,所以曲线的直角坐标方程为,,
由,可得,由,,
曲线的直角坐标方程为;
(2)由,可知,
令,其图象如下:
由曲线和有且仅有一个公共点,所以函数与的图象有且仅有一个公共点,所以由图象可知.
练习册系列答案
相关题目
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了各级城市的大街小巷,为了解我市的市民对共享单车的满意度,某调查机构借助网络进行了问卷调查,并从参与调查的网友中随机抽取了50人进行分析.若得分低于60分,说明不满意,若得分不低于60分,说明满意,调查满意度得分情况结果用茎叶图表示如图1.
(Ⅰ)根据茎叶图找出40岁以上网友中满意度得分的众数和中位数;
(Ⅱ)根据茎叶图完成下面列联表,并根据以上数据,判断是否有的把握认为满意度与年龄有关;
满意 | 不满意 | 合计 | |
40岁以下 | |||
40岁以上 | |||
合计 |
(Ⅲ)先采用分层抽样的方法从40岁及以下的网友中选取7人,再从这7人中随机选出2人,将频率视为概率,求选出的2人中至少有1人是不满意的概率.
参考格式:,其中
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |