题目内容

【题目】已知单调递增的等比数列满足,且的等差中项.

(Ⅰ)求数列的通项公式;

(Ⅱ)若,对任意正数数 恒成立,试求的取值范围.

【答案】(1)(2)

【解析】试题分析:(Ⅰ)通过的等差中项可知,结合,可知 ,进而通过解方程,可知公比,从而可得数列的通项公式;(Ⅱ)通过(Ⅰ) ,利用错位相减法求得,对任意正整数恒成立等价于对任意正整数恒成立,问题转化为求的最小值,从而可得的取值范围.

试题解析:(Ⅰ)设等比数列的首项为,公比为依题意,有,

代入,得,因此,

即有解得

又数列单调递增,则.

(Ⅱ)

①-②,得

对任意正整数恒成立.

对任意正整数恒成立,即恒成立,

,即的取值范围是.

【易错点晴】本题主要考查等差数列的通项公式以及求和公式、“错位相减法”求数列的和,以及不等式恒成立问题,属于难题. “错位相减法”求数列的和是重点也是难点,利用“错位相减法”求数列的和应注意以下几点:①掌握运用“错位相减法”求数列的和的条件(一个等差数列与一个等比数列的积);②相减时注意最后一项 的符号;③求和时注意项数别出错;④最后结果一定不能忘记等式两边同时除以.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网