题目内容
1.(1-x)3(1+x)10展开式中x5的系数为-63.分析 根据(1-x)3(1+x)10展开式中各项的特征,得出展开式中x5的系数是由两个二项展开式的项组成,由此求出答案.
解答 解:∵(1-x)3(1+x)10=[${C}_{3}^{0}$+${C}_{3}^{1}$•(-x)+${C}_{3}^{2}$•(-x)2+${C}_{3}^{3}$•(-x)3]
•(${C}_{10}^{0}$+${C}_{10}^{1}$•x+${C}_{10}^{2}$•x2+${C}_{10}^{3}$•x3+${C}_{10}^{4}$•x4+${C}_{10}^{5}$•x5+…)
=(1-3x+3x2-x3)(1+10x+45x2+120x3+210x4+252x5+…)
=(1×252-3×210+3×120-1×45)x5+…;
∴展开式中x5的系数是252-630+360-45=-63.
故答案为:-63.
点评 本题考查了二项式展开式的应用问题,也考查了逻辑思维能力与计算能力,是基础题目.
练习册系列答案
相关题目
12.安排甲、乙、丙、丁四人参加周一至周六的公益活动,每天只需一人参加,其中甲参加三天活动,乙、丙、丁每人参加一天,那么甲连续三天参加活动的概率为( )
A. | $\frac{1}{15}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{2}$ |
6.sin600°=( )
A. | $-\frac{{\sqrt{3}}}{2}$ | B. | $-\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |