题目内容

【题目】如图,过底面是矩形的四棱锥FABCD的顶点FEFAB,使AB=2EF,且平面ABFE⊥平面ABCD,若点GCD上且满足DG=G.

求证:(1)FG∥平面AED;

(2)平面DAF⊥平面BAF.

【答案】(1)见解析;(2)见解析.

【解析】试题分析: (1)根据题意证明四边形DEFG为平行四边形,FGED,由线面平行判定定理,结论易证得;(2)由面面垂直的性质定理证明AD⊥平面BAF,由面面垂直的判定定理易证出结论.

试题解析:

(1)证明:(1) DGGC,ABCD2EF,ABEFCD,

EFDG,EFDG.

四边形DEFG为平行四边形,

FGED.

FG∥平面AED,ED平面AED,

FG∥平面AED.

(2) 平面ABFE⊥平面ABCD,平面ABFE平面ABCDAB,

ADAB,AD平面ABCD,

AD⊥平面BAF,

AD平面DAF,

平面DAF⊥平面BAF.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网