题目内容
【题目】已知函数f(x)=x2﹣2|x﹣a|.
(1)若函数y=f(x)为偶函数,求a的值;
(2)若a= ,求函数y=f(x)的单调递增区间;
(3)当a>0时,若对任意的x∈(0,+∞),不等式f(x﹣1)≤2f(x)恒成立,求实数a的取值范围.
【答案】
(1)解:任取∈R,则有f(﹣x)=f(x)恒成立,即x2﹣2|﹣x﹣a|=x2﹣2|x﹣a|恒成立,
∴|x+a|=|x﹣a|恒成立,∴平方得2ax=﹣2ax恒成立,∴a=0
(2)解:当a= 时,f(x)=x2﹣2|x﹣a|= ,
由函数的图象可知,函数的单调递增区间为(﹣1, ]、[1,+∞)
(3)解:不等式式f(x﹣1)≤2f(x)化为(x﹣1)2﹣2|x﹣1﹣a|≤2x2﹣4|x﹣a|,
即:4|x﹣a|﹣2|x﹣1﹣a|≤x2+2x﹣1 (※),
对任意的x∈(0,+∞)恒成立,因为a>0,所以分如下情况讨论:
①0≤x≤a时,不等式(※)化为﹣4(x﹣a)+2[x﹣(1+a)]≤x2+2x﹣1恒成立,
即x2+4x+1﹣2a≥0对x∈[0,a]恒成立,
∵g(x)=x2+4x+1﹣2a在[0,a]上单调递增,
只需g(x)的最小值g(0)=1﹣2a≥0,∴0<a≤ .
②当a<x≤a+1时,不等式(※)化为 4(x﹣a)+2[x﹣(1+a)]≤x2+2x﹣1恒成立,
即 x2﹣4x+1+16a≥0对x∈(a,1+a]恒成立恒成立,
由①知0<a< ,∴h(x)=x2﹣4x+1+16a在∈(a,1+a]上单调递减,
∴只需h(x)的最小值h(1+a)=a2+4a﹣2≥0,∴a≤﹣2﹣ 或a≥ ﹣2,
∵ ﹣2< ,∴ ﹣2≤a≤ .
③当x>a+1时,不等式(※)化为 4(x﹣a)﹣2[x﹣(1+a)]≤x2+2x﹣1恒成立,
即 x2+2a﹣3≥0 对x∈(a+1,+∞)恒成立.
由于m(x)=x2+2a﹣3≥0,且m(x)在[a+1,+∞)上单调递增,
∴只需m(x)的最小值m(1+a)=a2+4a﹣2≥0,∴a≤﹣2﹣ 或a≥ ﹣2,
由②得: ﹣2≤a≤ .
综上所述,a的取值范围是: ﹣2≤a≤
【解析】(1)根据f(﹣x)=f(x)恒成立,求得a的值.(2)当a= 时,f(x)=x2﹣2|x﹣a|= ,结合它的图象得到函数的单调增区间.(3)不等式即4|x﹣a|﹣2|x﹣1﹣a|≤x2+2x﹣1 (※),分类讨论,去掉绝对值,求得它的解集.
【考点精析】通过灵活运用函数奇偶性的性质,掌握在公共定义域内,偶函数的加减乘除仍为偶函数;奇函数的加减仍为奇函数;奇数个奇函数的乘除认为奇函数;偶数个奇函数的乘除为偶函数;一奇一偶的乘积是奇函数;复合函数的奇偶性:一个为偶就为偶,两个为奇才为奇即可以解答此题.
【题目】2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元,距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如图频率分布直方图:
附:临界值参考公式: ,n=a+b+c+d.
(1)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);
(2)小明向班级同学发出倡议,为该小区居民损款,现从损失超过4000元的居民中随机抽出2户进行捐款援助,投抽出损失超过8000元的居民为ξ户,求ξ的分布列和数学期望;
(3)台风后区委会号召该小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如表,在表格空白外填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
经济损失不超过4000元 | 经济损失超过4000元 | 合计 | |
捐款超过500元 | 30 | ||
损款不超过500元 | 6 | ||
合计 |
P(K2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |