题目内容
【题目】已知,函数F(x)=min{2|x1|,x22ax+4a2},
其中min{p,q}=
(Ⅰ)求使得等式F(x)=x22ax+4a2成立的x的取值范围;
(Ⅱ)(ⅰ)求F(x)的最小值m(a);
(ⅱ)求F(x)在区间[0,6]上的最大值M(a).
【答案】(Ⅰ).(Ⅱ)(ⅰ).(ⅱ).
【解析】
试题(Ⅰ)分别对和两种情况讨论,进而可得使得等式成立的的取值范围;(Ⅱ)(Ⅰ)先求函数,的最小值,再根据的定义可得的最小值;(Ⅱ)分别对和两种情况讨论的最大值,进而可得在区间上的最大值.
试题解析:(Ⅰ)由于,故
当时,,
当时,.
所以,使得等式成立的的取值范围为.
(Ⅱ)(ⅰ)设函数,,
则,,
所以,由的定义知,即
(ⅱ)当时,
,
当时,.
所以,.
练习册系列答案
相关题目