题目内容

15.若定义域为R的奇函数f(x)=$\frac{x+n}{{{x^2}+m}}$在区间$(1,\frac{3}{2}]$上没有最小值,则实数m的取值范围是(  )
A.(0,2]B.$[\frac{3}{2},2]$C.$[\frac{3}{2},+∞)$D.$(\frac{3}{2},+∞)$

分析 由奇函数的性质:f(0)=0,可得n=0,再由g(x)=x+$\frac{m}{x}$在区间$(1,\frac{3}{2}]$上没有最大值.由g(x)在x=$\sqrt{m}$处取得极小值,讨论区间$(1,\frac{3}{2}]$与极值点的关系,即可得到m的范围.

解答 解:定义域为R的奇函数f(x),即有f(0)=0,
则n=0,又m>0,
由f(x)=$\frac{1}{x+\frac{m}{x}}$在区间$(1,\frac{3}{2}]$上没有最小值,
即为g(x)=x+$\frac{m}{x}$在区间$(1,\frac{3}{2}]$上没有最大值.
由g(x)在x=$\sqrt{m}$处取得极小值,
当$\sqrt{m}$≥$\frac{3}{2}$,即m≥$\frac{9}{4}$时,区间$(1,\frac{3}{2}]$为g(x)的减区间,成立;
当1≤$\sqrt{m}$<$\frac{3}{2}$,且g(1)>g($\frac{3}{2}$),即有1≤m<$\frac{9}{4}$,且m>$\frac{3}{2}$,
综上可得,m的范围是m>$\frac{3}{2}$.
故选:D.

点评 本题考查函数的性质和运用,主要是奇函数的性质,考查函数的最值的求法,注意运用基本不等式和函数的单调性,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网